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1. Introduction

In recent years, active control of sound and vibration in aeroelastic panel

has gained a great deal of attention due to many possible applications to

aerospace and related industries. In the absence of a flow field, such problems

have been studied by several authors. For an overview of this subject, one

is referred to the paper [1] - [4]. Most recent advances in active control of

sound and vibration can be found in the conference proceeding [5].

- In the current research project, we seek to investigate some problems in

active control of panel vibration excited by a boundary-layer flow over a flat

plate. In the first phase of this investigation, we have studied the optimal

control problem of vibrating elastic panel induced by a fluid dynamical load-

ing. For a simply-supported rectangular plate, the vibration control problem

can be analyzed by a modal analysis. The control objective is to minimize

the total cost functional, which is the sum of a vibrational energy and the

control cost. By means of the modal (eigenfunction) expansion, the dynam-

ical equation for the plate and the cost functional are reduced to a system

of ordinary differential equations and the cost functions for the modes. For

the linear elastic plate, the modes become uncoupled. The control of each

modal amplitude reduces to the so-called linear regulator problem in control

theory. Such problem can then be solved by the method of adjoint state.

This method was used successfully in our previous study on the control of

thermal fluctuation in a shear flow [6]. The optimality system of equations

was solved numerically by a 'shooting method. The results of this investi-

gation will be summarized in this report. We have also begun to look into

the control problem for a nonlinear panel vibration. Analytically we have



obtained somepreliminary results. Numerical solution of the optimal con-

trol of a nonlinear panel (or beam) in one spacedimensionis in progress.

Further developmentof the vibration control problemwill be detailed in the

next report.

2. Results on Active Control of Panel Vibrations

Let us considera viscousflow past over the elastic panel. The flow is

governedby the well know Navier-Stokesequation:

0t + = -lvp+ (1)
P

where the notations are standard. For a slightly compressible flow, the con-

tinuity equation reads

cOp
cO-S+ V. (p_) = 0. (2)

The panel is regarded as an elastic plate with thickness h, Young's modulus E

and Poisson's ratio 3'. Under a uniform tension with N > 0 (or compression

with N < 0) and the fluctuating wall pressure, the vertical displacement (

of the plate satisfies the following equation:

cO2( NA( - DA2( + Pw + q(Y_,t) (3)
p_-_ =

where p_ is the plate density, p_ the wall pressure fluctuation, and q is the

applied force as the active control. The constant D is the stiffness of the

plate defined by

Eh 3
D - (4)

12(1 _ _,2)"



According to the boundary-layer theory, given an upstream velocity field

/_)-,the flow near the plate can be determined by the Prandtl's approximation.

In particular, if the panel is located on the x - y plane, the pressure gradient

Op
across the boundary-layer is nearly constant, where _ = (x, Y, z). Suppose

Oz

that the mean flow outside the boundary-layer is parallel to the plate so that

/)" = (U_o,0,0) +/_)-1(5:,t), where U1 is a small perturbation. To derive the

equations for acoustic quantities fi,pl and pl, we let

= ?_0 -lt- Ul, P = P0 -JVPl and p = P0 + Pl (5)

where u0, P0 and P0 are flow variables associated with the mean flow. As in the

stability analysis, we introduce a parallel flow approximation. Then, in view

of (5), one obtains the acoustic equations from (1) and (2) by linearization:

0_ 1
Oq---_- + (U0" V)ul -- Vpl,

P0
(6)

0#1

0-7+ v. (po , + p, o) = o.

For an isentropic flow, pl and Pl are related by

(7)

Pl = Pl/c2, (8)

where c is the speed of sound for the unperturbed flow. Aside from a static

displacement, the vibration of the panel is described by the perturbation w

of equation (3) as follows:

02W

- NAw - DA2w + f + q(2,,t), (9)
P,o Ot 2



where f = /5_ is the fluctuating part of the wall pressure excited by the

unsteady boundary-layer flow. The coupling of the acoustic equations (6) and

(7), and the plate equation is through the boundary conditions. For the plate

equation (9), since it is simply supported by a periodic structure, we need

only to analyze the problem over a fundamental domain 0 _< x _< a, 0 _< y _< b

and impose the boundary conditons:

w(x,y,t)=O at x=O,a; y=O,b. (10)

Op
Since the pressure gradient _zz = 0 across the boundary, the wall pressure

i5_ocan be determined from the perturbed potential flow field U: through an

approximate Euler's equation, that is,

_5_,= F(0I). (11)

To counter this excitation, a control force q(x,y,t) was introduced in (9).

The objective of the active control is to minimize the average vibrational

energy and the control cost:

l foT fD Ow 2g(q) = _-_ {a(--_-) +/_(ZXw) 2 + _lVwl 2 + kq2}dtdxdy, (12)

where the time T may be infinite, D is the basic domain {0 < x < a, 0 <

y _< b}; a, fl, 7 and k are positive constants. In the language of the optimal

control of a distributed parameter system, the equation (9) is known as the

equation of state and J(q) defined by (12), the objective or cost functional.

Here the physical problem of vibrational control reduces to an optimiza-

tion problem: Given the wall pressure excitation/5_,, find an optimal control

q*(x, y, t) from a certain admissible class Q of functions which minimizes the



objective functional J(q), that is,

J(q*) = min{J(q), q in Q). (13)

To obtain an analytical solution, we consider the case of simply supported

boundary conditions:

w(x,y,t)=Oat x=0, a; y=0, b,

02w 02w . .

Ox2(X,y,t)=Oatx=O, aand-_y2(X,y,t)=Oaty=O,b. (14)

The initial conditions are given by

w(x,y,O) = Wo(x,Y), (_W "X
--_( ,y,O) = Wl(X,y). (15)

It is welt known that the set of functions

m_r n_-

_om_(z,y)= 2sin--xSina --b-y, m,n= 1,2,... (16)

are orthogonal eigenfunctions associated with the plate equation (9) and the

corresponding eigenvalues are

mTr 22

g[(__)2 + (._)2] + D[(__)2 + (______)] . (17)

In terms of the above eigenfunctions, we can expand the displacement w, the

wall pressure f and the control as follows:

(X)

w(x,y,t)= _ Wm,_(t)cpm_(x,y), (18)
m_n_l

co

f(x,y,t)= _ fm,,(t)_om,(x,y) (19)
m,n=l

5



and

Oo

q(x,u,t)= _ qm,.(t)_....(x,v), (20)
re,r*=1

where the coefficients win,, etc. are computed by

,o... = (w,_,m./= w(_,v,t)_m.(x,v)d_av,

and so on. A substitution of the expansions (18)-(20) into the equations (9),

(15) and (12) yields the following uncoupled system of equations:

{ p_,ib_,_ + _m,_w,_,, = f,,,,_(t) + q,,,_(t) , (21)_m.(O)= _o,m., _om.(o)= _1,_.

and

where

O0

J(q)= Y_ Jm,_(q),
m,n=l

(22)

l forJmn(q) - 2T {atb_n(t) + #m"w2_'_(t) + kq_,_(t)}dt (23)

for m, n = 1,2,.... Since the modes are uncoupled, if the cost Jm, for each

mode is minimized, so does the total cost J.

For a given (m, n)-mode, dropping all the subscripts, we are led to con-

sider the so-called "linear regulator" problem in optimal control: Find the

control q in the equation

{ p_b + _w = f(t) + q(t) , (24)_(o) = _o, _(o) = w,,



which minimizes

1 foT{acv2J(q) = -_ + #w 2 + kq2}dt , (25)

where #,,,,_ is given as in $,_,, with D and N replaced by/3 and % respectively.

By the method of adjoint state, [7], for the cost to be minimal, the state w

and its adjoint v must satisfy the optimality system:

pib + _w = f(t) + _(aw - v), (26)w(O)= w(o), (o(o)= wl,

and

p_ + _v = (_ + _)w, (27)
v(T) = 6(T) = O.

The optimal control q* is given by q = _(aw - v). One notes that, due

to the coupling between w and v, the above system (26)-(27) is a two-

point boundary-value problem. Numerically it can be solved by the shooting

method. Some numerical results for the original modal equations (21) and

(23) have been obtained.

For example, we choose a = 4_r, b = 7r, w0 = wl _- 0 and T = 4, and set

finn(t)- 1 cos(m 2 + n2)a/2t, m,n = 1,2, ....
(m2 + n_)

All the parameters are taken to be one except for fl, which is zero. The

maximal amplitude of vibration under a optimal control has been computed

and some results, corresponding to 4 modes (m + n = 4), are shown in Fig.

1 to Fig. 3. In the above figures, the solid curves represent the controlled

amplitudes, which are in contrast with the uncontrolled ones. It is seen that



the control is very effective in reducing the vibration amplitudes. For an

independentinterest, the controlled modeshapeat t = 4 is plotted as shown

in Fig. 4.

3. Active Control of Panel Fluttering

The problem of panel flutter is a classical problem in aeroelasticity. The

problem is of great concern to those who are involved in the design and

operation of airplanes. The fluttering is a phenomenon of nonlinear self-

excited panel vibrations. To include the nonlinear effect, we shall confine

our analysis to the case for which the panel is long in the y-direction so

that the problem involves only one space-dimension x. Here in contrast with

Eq. (9), the equation of motion for the panel reads:[ 8]

where

C_2W -- (N + gx) 02w D 04w
p Ot 2 Ox------_ - _ + f(x,t) + q(x,t),

02w
w - -0 at x=0, a,

Ox 2

OW JX
w(z,o) =

(28)

is the nonlinear effect due to streching, E and h are the Young's modulus

and the panel thickness, respectively. Without the active control q, the

nonlinear panel vibration due to the aerodynamic forcing f has been studied

extensively. However, a comprehensive study of the active control problem

is still lacking. Subject to the optimality criterion J(q) given by Eq. (12), we

have studied this problem analytically by a modal expansion. To this end,

we first derived the optimality system for the state equation (28), in which

8



the optimal control must satisfy the following terminal-value problem:

02q - (N + N_)-_72 Otq 02w 02w (29)P Ox 2 - D-_ix4 - 2_{-_x2, q) Ox2

1. 02w omw 02w

+ -i(_-b-V+ Z-g_z_+ "_-_x_)'

02q 0 at x=0, a,
q - Ox 2 -

Oq a Ow

q = 0 and _xx + kp Ot -0 at t=T,

where

(Eh.
_= -_--a) and

/o°(w, q) = wqdx.

Since the optimality system (28) and (29) is now nonlinear, the modal ex-

pansion (18) - (20) is x alone yields an infinite system of coupled equations.

We approximate the system by a modal truncation. The truncated system is

sovled numerically. The numerical study is still in progress. The numerical

solution will be presented in the next report.
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